
Natural Language Processing

NLP_CLT_1st_APR_27st_2025

Eng. Maytham Ghanoum
Artificial Intelligence & Deep Learning Specialist

MTN Syria – SCS – SVU CLT

+963947222064 - +963982018359

https://www.linkedin.com/in/maytham-ghanoum-697aa5207/
https://www.facebook.com/maytham.ghanoum

https://www.linkedin.com/in/maytham-ghanoum-697aa5207/
https://www.facebook.com/maytham.ghanoum

Python Programming Languages

Python Programming Languages:

Python is a high-level, general-purpose programming

language that has become one of the most popular and

versatile languages in the world. Known for its simplicity,

readability, and vast ecosystem of libraries, Python is

widely used across various domains, including web

development, data science, artificial intelligence, machine

learning, and, most notably, bioinformatics.

Python Programming Languages:

Features of Python:

Readability and Simplicity:

Python’s clean and straightforward syntax is designed to be easy to read and write, making it

an ideal language for beginners and experienced developers alike.

Interpreted Language:

Python is an interpreted language, meaning that code is executed line-by-line, which

facilitates rapid prototyping, testing, and debugging.

Cross-Platform Compatibility:

Python is compatible with various operating systems, including Windows, macOS, and

Linux, allowing developers to write code that runs seamlessly across different platforms.

Extensive Library Support:

One of Python's greatest strengths is its extensive collection of libraries and frameworks.

These libraries simplify complex tasks such as data analysis (e.g., NumPy, pandas), scientific

computing (e.g., SciPy), and Deep learning (e.g., TensorFlow, PyTorch).

Python Programming Languages:
Preparing of Python Environment:

The Best Environment for Python called Anaconda

1- Go to https://www.anaconda.com/download

2- Press on Free Download

3- The environment will start downloading, when finish you will

have a file look like this:

https://www.anaconda.com/download

Python Programming Languages:
Preparing of Python Environment:

The Best Environment for Python called Anaconda

Python Programming Languages:
Preparing of Python Environment:

The Best Environment for Python called Anaconda

Python Programming Languages:
Preparing of Python Environment:

The Best Environment for Python called Anaconda

Python Programming Languages:
Preparing of Python Environment:

The Best Environment for Python called Anaconda

Python Programming Languages:
Preparing of Python Environment:

The Best Environment for Python called Anaconda

Python Programming Languages:
Preparing of Python Environment:

The Best Environment for Python called Anaconda

1- From start menu open and type Jupyter.

Python Programming Languages:
Preparing of Python Environment:

The Best Environment for Python called Anaconda

2- The browser now will open automatically

Python Programming Languages:
Preparing of Python Environment:

The Best Environment for Python called Anaconda

3- Jupyter interface:

Python Programming Languages:
Preparing of Python Environment:

The Best Environment for Python called Anaconda

4- If your PC or Laptop is old and with low resources or you don’t have

Laptop, don’t worry you can work with Google Colab:

https://colab.research.google.com/

It’s a free platform from google that allow you to run any Python codes and

you also can create and manage a full project in it.

https://colab.research.google.com/

Python Programming Languages:
Preparing of Python Environment:

The Best Environment for Python called Anaconda

During this course, we will focus our work on Google Colab

Python Programming Languages:
Preparing of Python Environment:

The Best Environment for Python called Anaconda

4- If your PC or Laptop is old and with low resources or you don’t have

Laptop, don’t worry you can work with Google Colab:

Python Programming Languages:

Lets dive into Python, from Scratch!

Variables

Think of a variable as a container that stores information. Just like you might

put a name label on a box to remember what’s inside, a variable helps your

program remember a value.

•Example:

If you want to store your age, you can use a variable like age = 25.

In Python, creating a variable is as simple as giving it a name and assigning it

a value using the = symbol.

Python Programming Languages:

Lets dive into Python, from Scratch!

Rules for Variable Names:
1 - Must start with a letter (a-z, A-Z) or an underscore (_)

Example: name , _count

2- Cannot start with a number.

Name : Correct, 1name: Wrong.

3- No spaces or special characters:

@#$%: don’t use , firstname: correct, first_name: correct, first name: Wrong

4- Variables are case-sensitive: Name is different from name. A is totally different from a.

Python Programming Languages:

Lets dive into Python, from Scratch!

Numbers in Python

1- integers: 1, -5 , +800 , …

2- float: 1.5 , -0.8, -3.1486458.. , +18.26…

Python Programming Languages:

Lets dive into Python, from Scratch!

Strings in Python:
String is a sequence of characters—letters, numbers, symbols—enclosed in quotation marks.

- Single quotes: ‘hello’ or Double quotes: “hello” are the same in Python.

- To handle a string consist of multiple sentences and lines we use triple quotes.

“ ” ” Welcome to Python programming language. It widely used in Artificial Intelligence and

Bioinformatics” ” ”

Python Programming Languages:

Lets dive into Python, from Scratch!

Strings in Python:
String is a sequence of characters—letters, numbers, symbols—enclosed in quotation marks.

- Accessing Characters in a String:

You can access individual characters in a string using indexing (position of characters).

Example:

word = "Python"

first_letter = word[0] # 'P' (index starts at 0)

last_letter = word[-1] # 'n' (negative index starts from the end)

Python Programming Languages:

Lets dive into Python, from Scratch!

Booleans in Python:

Boolean represents one of two values: True , False

Python Programming Languages:

Lets dive into Python, from Scratch!

Now that we’ve covered the basics of variables, numbers, strings,

and Booleans, it's time to introduce one of the most important and

versatile data structures in Python: Lists.

Think of a list as a collection of items. Just like a shopping list holds

multiple items, a Python list can hold multiple values—numbers,

strings, or even other lists!

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a List?
A list is a collection of items (or elements) that are ordered and

changeable (mutable). Lists are defined using square brackets [] ,

and the elements inside the list are separated by commas.
Example:

Fruits = [‘apple’ , ‘banana’, ‘cherry’]

Here Fruits represent a variable which is a list containing three strings

elements : ‘apple’ , ‘banana’, ‘cherry’

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a List?
A list is a collection of items (or elements) that are ordered and

changeable (mutable). Lists are defined using square brackets [] ,

and the elements inside the list are separated by commas.

Example:

List of numbers:

Numbers = [1 , 2, 3 , 4 , 5]

List of strings:

Names = [‘Ahmad’ , ‘Sara’ , ‘Lama’ , ‘Mohammad’]

Mixed list:

Mixed = [1 , ‘hello’ , True, 3.148]

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a List?
Accessing Elements in a List:

You can access individual elements of a list using indexing.

- Indexing starts from 0 (just like strings).

- Negative indexing starts from the end.

Example:

fruits = ['apple', 'banana', 'cherry']

print(fruits[0]) # Output: 'apple'

print(fruits[1]) # Output: 'banana'

print(fruits[-1]) # Output: 'cherry' (last element)

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a List?

Changing Elements in a List
Lists are mutable, meaning you can change their content after they

are created.

Example:

fruits = ['apple', 'banana', 'cherry']

fruits[1] = 'blueberry' # Change 'banana' to 'blueberry'

print(fruits) # Output: ['apple', 'blueberry', 'cherry']

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a List?
Slicing Lists:

You can extract a portion of a list using slicing.

Syntax: list[start : end]

Start from the start index and go up to end without including it

Example:

numbers = [0, 1, 2, 3, 4, 5]

slice1 = numbers[1:4] # From index 1 to 3

print(slice1) # Output: [1, 2, 3]

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a List?
Slicing Lists:

You can also use step in slicing:

numbers = [0, 1, 2, 3, 4, 5]

slice2 = numbers[0:6:2] # Every second element

print(slice2) # Output: [0, 2, 4]

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a List?
Looping Through a List:

You can use a for loop to iterate through each item in a list.
Example:

fruits = ['apple', 'banana', 'cherry']

for fruit in fruits:

print(fruit)

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a List?
Nested Lists: this is how we will handle Biological Data!

A nested list is a list inside another list.

Example:

nested_list = [[1, 2, 3], ['a', 'b', 'c']]

print(nested_list[0]) # Output: [1, 2, 3]

print(nested_list[0][1]) # Output: 2

Python Programming Languages:

Lets dive into Python, from Scratch!

Now that we’ve explored lists, let’s move on to another essential data

structure in Python: Dictionaries.

A dictionary is like a real-world dictionary where you look up a word (the

key) to find its meaning (the value). In Python, dictionaries are used to store

data in key-value pairs. They are powerful, flexible, and widely used in

programming.

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a Dictionary?
A dictionary is a collection of key-value pairs, where each key is unique, and it is used

to access its corresponding value.

Keys can be strings, numbers, or even lists.

Values can be any data type, including numbers, strings, lists, or even other

dictionaries.

Creating a Dictionary:

student = {

'name': 'Alice',

'age': 22,

'major': 'Biology’

}

name is the 1st key, Alice is its value

age is the 2nd key, 22 is its value

Major is the 3rd key, Biology is its value

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a Dictionary?
Accessing Values in a Dictionary:

To access a Value, you can use the key inside square brackets [] or the get() method.

Example:

student = {'name': 'Alice', 'age': 22, 'major': 'Biology'}

print(student['name']) # Output: Alice

print(student.get('age')) # Output: 22.

Adding or Updating Key-Value Pairs:
You can add a new key-value pair or update an existing one by assigning a value to a

key.
student = {'name': 'Alice', 'age': 22}

student['major'] = 'Biology' # Adding a new key-value pair

student['age'] = 23 # Updating the value of an existing key

print(student) # Output: {'name': 'Alice', 'age': 23, 'major': 'Biology'}

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a Dictionary?
Removing Key-Value Pairs:

You can remove a key-value pair using the del statement or the pop() method.

Example:

student = {'name': 'Alice', 'age': 22, 'major': 'Biology'}

del student['major'] # Removes the key 'major'

print(student) # Output: {'name': 'Alice', 'age': 22}

age = student.pop('age') # Removes and returns the value of 'age'

print(student) # Output: {'name': 'Alice'}

print(age) # Output: 22

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a Dictionary?
Looping Through a Dictionary

You can loop through a dictionary to access its keys, values, or both.
Example:

student = {'name': 'Alice', 'age': 22, 'major': 'Biology'}

Loop through keys

for key in student:

print(key) # Output: name, age, major

Loop through values

for value in student.values():

print(value) # Output: Alice, 22, Biology

Loop through key-value pairs

for key, value in student.items():

print(key, ':', value)

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a Dictionary?

Nested Dictionaries:
You can store dictionaries inside other dictionaries, which is useful for

representing more complex data.

students = {

'student1': {'name': 'Alice', 'age': 22},

'student2': {'name': 'Bob', 'age': 24}

}

print(students['student1']['name']) # Output: Alice

Python Programming Languages:

Python Programming Languages:

