. Y I Ry
. \\ i ..
. .- .8 . ..
R ® oo
. . >
. A . . A)
- = ° - ° . ..
= . ™ .
= - .- .
® .. A
J {' B
o .

T
Eng. Maytham Ghanoum . -
Artificial Intelligence & Deep Learning Specialist - -~ "*" = <l
MTN Syria — SCS — SVU CLT T el INEREC S S
+963947222064 - +963982018359 :

https://www.linkedin.com/in/maytham-ghanoum-697aa5207/
https://www.facebook.com/maytham.ghanoum

Python Programming Languages

"{{ 0‘
<
*

S pan

Python Programming Languages:

Python is a high-level, general-purpose programming
language that has become one of the most popular and
versatile languages in the world. Known for its simplicity,
readability, and vast ecosystem of libraries, Python is
widely used across various domains, including web

development, data science, artificial intelligence, machine
learning, and, most notably, bioinformatics.

Python Programming Languages:

Features of Python:

Readability and Simplicity:

Python’s clean and straightforward syntax is designed to be easy to read and write, making it
an ideal language for beginners and experienced developers alike.

Interpreted Language:

Python is an interpreted language, meaning that code is executed line-by-line, which
facilitates rapid prototyping, testing, and debugging.

Cross-Platform Compatibility:

Python is compatible with various operating systems, including Windows, macOS, and
Linux, allowing developers to write code that runs seamlessly across different platforms.
Extensive Library Support:

One of Python's greatest strengths is its extensive collection of libraries and framewaorks.
These libraries simplify complex tasks such as data analysis (e.g., NumPy, pandas), scientific
computing (e.g., SciPy), and Deep learning (e.g., TensorFlow, PyTorch).

LI r ., R
S e > o

Qtti!tgtt’.‘

c 25 anaconda.com/download Yo e © O

[V]

J ANACONDA. Products Solutions Resources Partners Company i\ /" @ Free Download m
/] p. ?j

https://www.anaconda.com/download

J Anaconda3 2024.06-1 (64-bit) Setup

Welcome to Anaconda3 2024.06-1
(64-bit) Setup

Setup will guide you through the installation of Anaconda3
2024.06-1 (64-bit).

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Next to continue.

AN it A

- Anaconda3 2024.06-1 (64-bit) Setup

= License Agreement
’1_) ANACONDA. Please review the license terms before installing Anaconda3
2024.06-1 (64-bit).

Press Page Down to see the rest of the agreement.

WNACONDA TERMS OF SERVICE

Please read these Terms of Service carefully before purchasing, using, accessing, or

downloading any Anaconda Offerings (the "Offerings”). These Anaconda Terms of

Service ("TOS") are between Anaconda, Inc. ("Anaconda”) and you ("You"), the

individual or entity acquiring and/or providing access to the Offerings. These TOS govern

Your access, download, installation, or use of the Anaconda Offerings, which are A

provided to You in combination with the terms set forth in the applicable Offering JRE—— ‘:4 = sy

Description, and are hereby incorporated into these TOS. Except where indicated A Sl >~ =

otherwise, references to “You" shall include Your Users. You hereby acknowledge that R AN it
these TOS are binding, and You affirm and signify your consent to these TOS by : W’?‘?ﬁ

registering to, using, 'nsta_llipg, downloading, or accessing the Ana;onda Offerings

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Anaconda3 2024.06-1 (64-bit).

2 Anaconda3 2024.06-1 (64-bit) Setup

Select Installation Type

Please select the type of installation you would like to perform for
Anaconda3 2024.06-1 (64-bit).

() ANACONDA.

Install for:

(@) Just Me (recommended)

() all Users (requires admin privileges)

G

—/-‘O ol . -
=S £ Xt
/SR 2 i

" LA 23 SAREESSSESSE

MAANO

¥ »
i pe

p—_— I

) Anaconda3 2024.06-1 (64-bit) Setup

Choose Install Location

._) ANACONDA. (choose the folder in which to install Anaconda3 2024.06-1
(64-bit).

Setup will install Anaconda3 2024.06-1 (64-bit) in the following folder. To install in a different
folder, dick Browse and select another folder. Clidk Next to continue.

T -
Destination Folder Y o PRGN ™

- Ly
T ey - e
C:‘l.Users‘nln.anacondaEWew folder, e AN ySou<T

G

Space required: 5.0 GB
Space available: 350.3 GB

Anaconda, Inc

I - /
\ {_90 ﬁ _______ e - Al 3 W a R S
= éo g P pot
??/{{(\\\\% R 177 GAaSAEss
o = /'M —\ ';x "
e \(‘\'\—\\ﬁ,\ = £
MAANOUT- 3% oee

p—_— I

g A‘s{\/
MAREUM-

—

afich

2 Anaconda3 2024.06-1 (64-bit) Setup

B Advanced Installation Options
:'i.) ANACONDA. Customize how Anaconda3 integrates with Windows

[] Create shortcuts (supported packages only),
(] Add Anaconda3 to my PATH environment variable
NOT recommended. This can lead to conflicts with other applications. Instead, use
the Commmand Prompt and Powershell menus added to the Windows Start Menu.
[]Register Anaconda3 as my default Python 3.12

Recommended. Allows other programs, such as VSCode, PyCharm, etc. to
automatically detect Anaconda3 as the primary Python 3. 12 on the system,

[] Clear the package cache upon completion
Recommended. Recovers some disk space without harming functionality.

G

Python Programming Languages:
Preparing of Python Environment:
The Best Environment for Python called Anaconda

1- From start menu open and type Jupyter.

Best match

~=~ Jupyter Notebook

A ¥
PP >

Search the web

Jupyter Notebook
L - See more search results App

:,g' 33333%
SRR e e
2L '

Python Programming Languages:
Preparing of Python Environment:
The Best Environment for Python called Anaconda

2- The browser now will open automatically

e Ve S b

File View Settings Help

W Fles € Running

Select items to perform actions on them. vNew % Upload C

N/ L] Notebook
Terminal

B Name
¥ Console

M 3D Object = .
[| jects = New File
B B anaconda3 New Folder

B B Cisco Packet Tracer 8.2.1 last month

oy 35
oo 3333 "o
P - o-9-o-4-Sl T
so¢ i=Z===SSSSSRBIT gag
AT r
Q:" - o

130 RRRRRRESE S22 2

Python Programming Languages:
Preparing of Python Environment:
The Best Environment for Python called Anaconda

3- Jupyter interface:

::' Jupyter Untitled31 Last Checkpoint; 8 seconds ago

File Edit View Run Kemel Settings Help
B+ XDOP»®C» code v

:',"’”, sesSeR S 2

4 ~) PR - 4.y 01
oo in -+ T
Sea 'T]

et E RO
2t SRR SR SRR 00

Python Programming Languages:
Preparing of Python Environment:
The Best Environment for Python called Anaconda

4- If your PC or Laptop is old and with low resources or you don’t have
Laptop, don’t worry you can work with Google Colab:

It’s a free platform from google that allow you to run any Python codes and

you also can create and manage a full project in it.

:','"”, 33333300

4 ” : PEB - & o ¥
"o i - -0:00
e 'T]
et EESTE] PO -
oW S R .

- RSSO e

Niae "‘"!tt!c’”‘
ot

Aoy

https://colab.research.google.com/

Python Programming Languages:

Preparing of Python Environment:

The Best Environment for Python called Anaconda

During this course, we will focus our work on Google Colab

elcome To Colab EZ

ile Edit Vier

Open notebook

e of conteni

tting started Examples
Search notebooks Q
ta science c ml

Recent
hchine learning Title Last opened <) First opened 1:1,

bre Resources Google Drive
4\ Untitled65.ipynb November 27 November 27
Featured exa

GitHub
Section ‘ CO Welcome To Colab November 27 November 18
'~ Upload

4\ Untitled64.ipynb November 27 November 23

Python Programming Languages:

Preparing of Python Environment:

The Best Environment for Python called Anaconda

4- If your PC or Laptop is old and with low resources or you don’t have
Laptop, don’t worry you can work with Google Colab:

elcome To Colab gﬁ

ile Edit Vie
Open notebook

Search notebooks

Recent
Title Last opened First opened 1:;

s Google Drive

4% untitled65.ipynb November 27 November 27

GitHub

CO Welcome To Colab November 27 November 18
Upload

4\ untitled64.ipynb November 27 November 23

Python Programming Languages:

Lets dive into Python, from Scratch!

Variables

Think of a variable as a container that stores information. Just like you might

put a name label on a box to remember what’s inside, a variable helps your
program remember a value.

«Example:

If you want to store your age, you can use a variable like age = 25.

In Python, creating a variable is as simple as giving it a name and assigning it
a value using the = symbol.

_.:W,' 33333300

. ~ : PR - 4.y 01
200 ia -+ I T
e 'T]
:::0-- 333 P . s
oW S R .

- RSSO o

Nl "‘"!tt!c’”‘
R

Aoy

Python Programming Languages:

Lets dive into Python, from Scratch!

Rules for Variable Names:
1 - Must start with a letter (a-z, A-Z) or an underscore ()
Example: name, count

2- Cannot start with a number.
Name : Correct, 1name: Wrong.

3- No spaces or special characters:
@#%$%: don’t use , firstname: correct, first_name: correct, first name: Wrong

4- Variables are case-sensitive: Name is different from name. A is totally different from a.

s 35

Sose . ., o
S99 3 == §Hdv
L ol 'T]

SRl S S
et SR 00¢

Basic Operations with Numbers:

Operation Example

Addition

s P ‘1—4\ - i
Subtraction 7 S

- T o

Multiplication
Division
Modulus (remainder)

Exponent (power)

P Y

=N S i
g WREE N N
String Operations: AT A o (o
Ko

- "ﬂ‘wﬂ_rb‘.‘_ﬁ/ .

Operation Example Result

Concatenation (joining) 'Hello' + ' World' "Hello World®
Repetition "Hi® * "HiHiHi®

Length

Python Programming Languages:

Lets dive into Python, from Scratch!

Strings in Python:

String is a sequence of characters—Iletters, numbers, symbols—enclosed in quotation marks.

- Accessing Characters in a String:
You can access individual characters in a string using indexing (position of characters).

Example:

word = ""Python"'

first_letter = word[0] # 'P' (index starts at 0)

last_letter = word[-1] # 'n" (negative index starts from the end)

s 35

Sose . ., o
S99 3 == §Hdv
L ol 'T]

et R
2t SRR SR SRR 00

- RSSO o

Nl "‘"!tt!c’”‘
R

Aoy

Boolean Operations:

Operation Result
Equal to True
Not equal to ! ! True T
> - o 7\ " - lp— ==
WL R adl) T N
Greater than True ’ T e o
A2 D O

Less than : 2 < True
Greater than or equal to True

Less than or equal to : : True

Python Programming Languages:

Lets dive into Python, from Scratch!

Now that we’ve covered the basics of variables, numbers, strings,
and Booleans, it's time to introduce one of the most important and
versatile data structures in Python: Lists.

Think of a list as a collection of items. Just like a shopping list holds
multiple items, a Python list can hold multiple values—numbers,
strings, or even other lists!

:',"’”, sesSeR S 2

4 ~) PR - 4.y 01
oo in -+ T
Sea 'T]

et E RO
2t SRR SR SRR 00

Python Programming Languages:

Lets dive into Python, from Scratch!

What i1s a List?

A list Is a collection of items (or elements) that are ordered and
changeable (mutable). Lists are defined using square brackets [],
and the elements inside the list are separated by commas.
Example:

Fruits = [“apple’, ‘banana’, “cherry’]

Here Fruits represent a variable which is a list containing three strings
elements : ‘apple’, ‘banana’, ‘cherry’

_.:W,' 33333300

85 o ..
*00. ia -+ I T
e 'T]
NIt >+

e e R 9/

Sepan

Python Programming Languages:

Lets dive into Python, from Scratch!

What i1s a List?

A list Is a collection of items (or elements) that are ordered and
changeable (mutable). Lists are defined using square brackets [],
and the elements inside the list are separated by commas.

Example:

List of numbers:

Numbers=[1,2,3,4,5]

List of strings:

Names = [‘Ahmad’, ‘Sara’, ‘Lama’, ‘Mohammad’]

Mixed list:

Mixed=[1, ‘hello’, True, 3.148]

> » 24 —~ >

s ¢ i sesSeR S 2

g

9é. iz

e+ 44 ¢

™ - o S
484 R R SRR E e (o
< :
A S S T et
e ““tnzt".cood

P

Sepan

Python Programming Languages:

Lets dive into Python, from Scratch!

What i1s a List?

Accessing Elements in a List:

You can access individual elements of a list using indexing.
- Indexing starts from O (just like strings).

- Negative indexing starts from the end.

Example:

fruits = ['apple’, 'banana’, ‘cherry’]

print(fruits[0]) # Output: ‘apple'

print(fruits[1]) # Output: 'banana’

print(fruits[-1]) # Output: ‘cherry' (last element)

> » 24 - :

3355

$rre

9é. iz

b+ 44

™ - o S

484 R R SRR E e (o

~ .
A S S S e R
e ““tnzt".cood

P

Sepan

Python Programming Languages:

Lets dive into Python, from Scratch!

What i1s a List?

Changing Elements in a List

Lists are mutable, meaning you can change their content after they
are created.

Example:

fruits = ['apple’, 'banana’, ‘cherry’]

fruits[1] = 'blueberry’ # Change 'banana’ to ‘blueberry'

print(fruits) # Output: ['apple’, 'blueberry’, ‘cherry']

> » 24 - :

3355

$rre

9é. iz

b+ 44

™ - o S

484 R R SRR E e (o

~ .
A S S S e R
e ““tnzt".cood

P

Sepan

Basic List Operations

Operation Description Example

Length of list len() returns the number of len{[1, 2, 2]}

iterns

Append (add to list.append(item) adds an item fruits.append('orange"’) ["apple”,

end) "banana“,
‘cherry”,
‘orange”]

Insert (add at list.insert(index, item) adds fruits.insert(1, ["apple",

index) an item at a specific index ‘grape’) "grape’, 'banana’
"‘cherry”]

Remove by list.remove(item) removes an fruits.remove("banana’) ["apple”,

value item “cherry "]

Pop (remove by list.pop(index) removes an fruits. pop() ["apple”,
index) item at a specific index (default is "banana’]

last item) (remowes ‘cherry’)
Concatenation + joins two lists [1, 2] + [3., 4] [1. 2, 3, 4]

Repetition * repeats a list [1, 2] * 3

Python Programming Languages:

Lets dive into Python, from Scratch!

What i1s a List?

Slicing Lists:
You can extract a portion of a list using slicing.
Syntax: list[start : end]

Start from the start index and go up to end without including it
Example:

numbers = [0, 1, 2, 3, 4, 5]
slicel = numbers[1:4] # From index 1 to 3
print(slicel) # Output: [1, 2, 3]

oy 333

b s 33 PR REEE

35

94 is

a8

™ - 2 9-—n bl

154 RARARRESEESEES L00

~ !
e s ot
e ““tnzt".cood

R

Aoy

Python Programming Languages:

Lets dive into Python, from Scratch!

What i1s a List?

Slicing Lists:
You can also use step in slicing:

numbers = [0, 1, 2, 3, 4, 5]
slice2 = numbers[0:6:2] # Every second element
print(slice2) # Output: [0, 2, 4]

_.:W,' 33333300

85 o ..
*00. ia -+ I T
e 'T]
NIt >+

e e R 9/

Sepan

Python Programming Languages:

Lets dive into Python, from Scratch!

What i1s a List?

Looping Through a List:
You can use a for loop to iterate through each item in a list.
Example:
fruits = ['apple’, 'banana’, ‘cherry’]
for fruit in fruits:
print(fruit)

_.:W,' 33333300

85 o ..
*00. ia -+ I T
e 'T]
NIt >+

e e R 9/

Sepan

List Methods

Here are some commonly used methods in Python lists:

Method
append(item)
insert(index, item)
remove (item)
pop(index)
index({item)
count({item)

sort()

reverse()

Description

Adds an item to the end of the list
Inserts an item at a specific index
Removes the first occurrence of an item
Removes and returns an item at an index
Returns the index of the first occurrence
Counts how many times an item appears
Sorts the list in ascending order

Reverses the order of the list

Example

fruits.append(‘orange’)
fruits.insert(1, 'grape’)
fruits.remove(apple’)
fruits.pop(8)

fruits. index('banana’)
fruits.count(apple’)
numbers. sort()

numbers.reverse()

iy

Python Programming Languages:

Lets dive into Python, from Scratch!

What i1s a List?

Nested L.ists: this is how we will handle Biological Data!
A nested list is a list inside another list.

Example:

nested _list =[[1, 2, 3], ['a’, 'b", 'c']]
print(nested_list[0]) # Output: [1, 2, 3]
print(nested_list[0][1]) # Output: 2

oy 333

b s 33 PR REEE

35

94 is

a8

™ - 2 9-—n bl

154 RARARRESEESEES L00

~ !
e s ot
e ““tnzt".cood

R

Aoy

Python Programming Languages:

Lets dive into Python, from Scratch!

Now that we’ve explored lists, let’s move on to another essential data

structure in Python: Dictionaries.

A dictionary is like a real-world dictionary where you look up a word (the
key) to find its meaning (the value). In Python, dictionaries are used to store
data in key-value pairs. They are powerful, flexible, and widely used in

programming.

s 35

e o

o T +2++4hd LU
9P

e
. 2 P
e AR RS R RS 444

S ST P

A "‘"!tt!c’”‘
P

Sepan

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a Dictionary?
A dictionary is a collection of key-value pairs, where each key is unique, and it is used
to access its corresponding value.
Keys can be strings, numbers, or even lists.
Values can be any data type, including numbers, strings, lists, or even other
dictionaries.
Creating a Dictionary:
student = {
‘name’: "Alice’,
‘age’: 22,
‘major’: 'Biology’
}

name is the 1%t key, Alice is its value
age is the 2" key, 22 is its value
Major is the 3" key, Biology is its value

b 3333

Siss o

’90. i == .98

e+ 44 Y

> s St

2t SRR SR SRR 00
S ST el

A "‘"!tt!c’”‘
P

Sepan

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a Dictionary?

Accessing Values in a Dictionary:

To access a Value, you can use the key inside square brackets [] or the get() method.
Example:

student = {'name'": 'Alice’, 'age": 22, 'major': 'Biology'}

print(student['name']) # Output: Alice

print(student.get(‘age’)) # Output: 22.

Adding or Updating Key-Value Pairs:

You can add a new key-value pair or update an existing one by assigning a value to a
key.

student = {'name': 'Alice’, 'age". 22}

student['major'] = 'Biology" # Adding a new key-value pair

student['age'] = 23 # Updating the value of an existing key

print(student) # Output: {'name’: 'Alice’, 'age": 23, 'major': '‘Biology'}

B

o T +2++4hd LU

294, i 2 s hér

b + 44 @

. = R

e AR RS R RS 5 44
- RSSO ot

A "‘"!tt!c’”‘
P

Sepan

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a Dictionary?
Removing Key-Value Pairs:
You can remove a key-value pair using the del statement or the pop() method.

Example:

student = {'name’": 'Alice’, 'age": 22, 'major': 'Biology'}

del student['major'] # Removes the key 'major

print(student) # Output: {'name': 'Alice’, 'age": 22}

age = student.pop(‘age’) # Removes and returns the value of 'age'
print(student) # Output: {'name": 'Alice'}

print(age) # Output: 22

_ 33333533

Siss R« 4 ¢
::: =2 2 -0:00
e+ 44 o
P8t S S S TR (¢

Aoy

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a Dictionary?
Looping Through a Dictionary
You can loop through a dictionary to access its keys, values, or both,
Example:
student = {'name": 'Alice’, 'age": 22, 'major": 'Biology'}
Loop through keys
for key in student:
print(key) # Output: name, age, major

Loop through values
for value in student.values():
print(value) # Output: Alice, 22, Biology

Loop through key-value pairs
for key, value in student.items():
print(key, "', value)

s 35

::: - s+ ahd LU
-

9. =2 0hor
‘o8 +H

8 S
e AR RS R RS o+

- RSSO el

Nl ‘“nntc”‘
R

Sepan

Python Programming Languages:

Lets dive into Python, from Scratch!

What is a Dictionary?
Nested Dictionaries:
You can store dictionaries inside other dictionaries, which is useful for
representing more complex data.
students = {
'studentl': {'name"; 'Alice’, 'age": 22},
'student2': {'name". 'Bob’, 'age": 24}
}
print(students['student1']['name']) # Output: Alice

:',"’”, sesSeR S 2

4 ~) PP - 4 &1 ¢
oo in -+ T
L ol 'T]
s s 4
P84 iy ,

Sepan

Dictionary Methods

Here are some commonly used dictionary methods:

Method

dict.

dict.

dict.

dict

dict.

get(key)
keys()

values()

Jdtems ()

update()

.clear()

Description

Returns the value for the specified key
Returns all keys as a list

Returns all values as a list

Returns all key-value pairs

Updates the dictionary with key-value pairs from

another dictionary

Removes all items from the dictionary

Example
student
student
student
student

student
A"}

student

.get("name’)
keys()
.values()
.items()

.update({ grade’:

.clear()

Basic Dictionary Operations

Operation
Access a value

Add/Update a

value

Remove a key-

value pair

Check if key

exists
Get all keys
Get all values

Get all key-value

Description
dict[key]

dict[key] = value

del dict[key] or

dict.pop(key)

key in dict

dict.keys()
dict.values()

dict.items()

N/

THAT

MAANO

—

J— I

Example
student['name’]

student['age'] =
23

del
student["age "]
"age' in student
student.keys() dict keys(['name’, "age'])
student.values() dict values(['Alice’, 22])
student.items() dict items([({ 'name’, 'Alice')},

(Tage’, 22)])

P
S
A%/ o
/.
IN
N
y f»/ »
ALY
A e
’U}?{{
o=
K -> "A
A1 Y £ 2Y
|y)
,‘4‘—4-.,__,; = e .
: 8 &

_——

¥ »
FrYy++d

