
Natural Language Processing

NLP_CLT_1c_May_4th_2025

Eng. Maytham Ghanoum
Artificial Intelligence & Deep Learning Specialist

MTN Syria – SCS – SVU CLT

+963947222064 - +963982018359

https://www.linkedin.com/in/maytham-ghanoum-697aa5207/
https://www.facebook.com/maytham.ghanoum

https://www.linkedin.com/in/maytham-ghanoum-697aa5207/
https://www.facebook.com/maytham.ghanoum

1. Introduction

2. Why to learn NLP?

3. Who Can Use NLP?

4. Course Outlines

5. NLTK

Natural language processing

(NLP) is an essential branch of

artificial intelligence (AI) that

focuses on enabling machines to

comprehend, interpret, and

respond to human language in

a natural and intuitive manner.

NLP technology allows

machines to understand the

meaning behind human

language and respond

appropriately, enabling a more

seamless interaction between

humans and machines.

Introduction

Why we must learn NLP?

֎ Growing Demand.

֎ Advanced Language
Processing

֎ Solving Complex
Problems

֎ Multidisciplinary Field

֎ Lucrative Job
Opportunities

֎ Impactful Applications

Who Can use NLP?

Outlines

֎NLTK

֎Tensorflow & PyTorch

֎Basics of Text Processing

֎Text Representation

֎Deep Learning from scratch

֎Text Classification

֎Named Entity Recognition (NER)

֎Topic Modeling

֎Sequence-to-Sequence Models

֎Transformers

֎Hands-on Projects and Exercises

Tokenization
Sentence Tokenization: This involves splitting text into sentences.

import nltk
from nltk.tokenize import sent_tokenize

Sample text
text = "NLTK is a leading platform for building
Python programs to work with human language
data."

Sentence Tokenization
sentences = sent_tokenize(text)
print("Sentence Tokenization:")
print(sentences)

Tokenization
Character Tokenization: This involves splitting text into individual characters.

import nltk
from nltk.tokenize import sent_tokenize

Sample text
text = "NLTK is a leading platform for building
Python programs to work with human language
data."

Character Tokenization
characters = list(text)
print("\nCharacter Tokenization:")
print(characters)

Stemming

Stemming is a text normalization technique used in
natural language processing (NLP) to reduce words to
their root or base form, known as the "stem." The
process involves removing suffixes or prefixes from
words to obtain the stem. Stemming aims to condense
words to their common linguistic root, even if the
resulting stem is not a valid word itself. This can help
in tasks such as information retrieval, text analysis,
and document clustering

Stemming

1.Reducing Dimensionality: Stemming reduces the number
of unique words in a corpus by collapsing words with similar
meanings into the same stem. This helps in simplifying the
vocabulary and reducing the computational complexity of
NLP tasks.

2.Improving Text Matching: Stemming enables more
accurate matching of words with the same root, even if they
are inflected forms or have different prefixes or suffixes.
This can improve the performance of tasks such as search
engines or document retrieval systems.

Stemming

3. Preprocessing for Machine Learning: Stemming is often
used as a preprocessing step before applying machine learning
algorithms to text data. By reducing words to their stems, the
model can focus on the underlying semantic meaning rather
than variations in word forms.

4. Enhancing Interpretability: Stemming can help in
summarizing text data by collapsing related words into a
common stem. This can make it easier to interpret the content
of documents or analyze trends in a corpus.

Lemmatization

Lemmatization is another text normalization technique used in
natural language processing (NLP) to reduce words to their
base or dictionary form, known as the "lemma." Unlike
stemming, which simply removes suffixes or prefixes to obtain
the root form, lemmatization considers the morphological
analysis of words and ensures that the resulting lemma is a
valid word present in the language's dictionary.

Lemmatization

1. Improved Accuracy: Lemmatization produces valid words as
lemmas, which can improve the accuracy of downstream NLP
tasks such as text classification, information retrieval, and
machine translation.

2. Preservation of Semantic Meaning: Lemmatization
preserves the semantic meaning of words by converting them
to their base form. This helps in capturing the true meaning of
the word and reducing ambiguity in text analysis.

Lemmatization

3.Better Interpretability: Lemmatization results in more
interpretable text data by reducing words to their canonical
form. This can facilitate better understanding and
interpretation of the text by humans and machines alike.

4. Handling of Inflected Forms: Lemmatization handles
inflected forms of words by mapping them to their base form
in the dictionary. This ensures that variations of the same word
are treated consistently in NLP tasks.

Part-of-speech (POS) tagging

Grammatical tagging, is the process of assigning grammatical
labels (such as noun, verb, adjective, etc.) to each word in a
text corpus based on its syntactic role within a sentence. POS
tagging is a fundamental task in natural language processing
(NLP) and plays a crucial role in various downstream tasks such
as named entity recognition, parsing, sentiment analysis, and
machine translation.

Part-of-speech (POS) tagging

1. Syntactic Analysis: POS tagging provides insight into the
syntactic structure of sentences by identifying the grammatical
roles of words. This information can help in understanding the
relationships between words and phrases in a sentence.

2. Semantic Analysis: POS tags can indicate the semantic
meaning of words by identifying their syntactic categories. For
example, identifying nouns and verbs can help in
understanding the subject-action-object relationships in
sentences.

Part-of-speech (POS) tagging

3. Ambiguity Resolution: POS tagging helps in disambiguating
words with multiple meanings based on their syntactic
context. For instance, the word "bank" can be a noun (e.g.,
river bank) or a verb (e.g., to bank money), and POS tagging
helps in determining its correct part of speech.

4. Improving Accuracy of NLP Tasks: Many NLP tasks benefit
from POS tagging as it provides useful linguistic information
that can improve the accuracy of downstream tasks such as
named entity recognition, sentiment analysis, and machine
translation..

Part-of-speech (POS) tagging

POS tags in the output:
NNP: Proper noun, singular - This tag indicates that the word is a proper
noun (e.g., names of specific people, places, or organizations) and is
singular. Examples include "NLTK" and "Python" in the input text.

VBZ: Verb, 3rd person singular present - This tag indicates that the word is a
verb in the present tense, third person singular form. Examples include "is"
in the input text.

DT: Determiner - This tag indicates that the word is a determiner, which is
used to specify nouns. Examples include "a" in the input text.

Part-of-speech (POS) tagging

POS tags in the output:
VBG: Verb, gerund or present participle - This tag indicates that the word is
a verb in the gerund or present participle form. Examples include "leading"
and "building" in the input text.

NN: Noun, singular or mass - This tag indicates that the word is a noun,
either singular or mass (uncountable). Examples include "platform" and
"language" in the input text.

IN: Preposition or subordinating conjunction - This tag indicates that the
word is a preposition or a subordinating conjunction. Examples include
"for" and "with" in the input text.

Part-of-speech (POS) tagging

POS tags in the output:
NNS: Noun, plural - This tag indicates that the word is a noun in the plural
form. Examples include "programs" and "data" in the input text.

TO: to - This tag indicates the word "to" as part of an infinitive verb form or
as a preposition. Example includes "to" in the input text.

JJ: Adjective - This tag indicates that the word is an adjective, which
describes or modifies a noun. Example includes "human" in the input text.
. : Punctuation - This tag indicates that the word is punctuation, such as
periods, commas, or other symbols. Example includes "." in the input text.

Bag of Words

BOW

The Bag-of-Words (BoW) model is a fundamental method for text

representation in Natural Language Processing (NLP). It is a way to represent

text data (such as sentences or documents) as numerical vectors, which can be

used as input for various machine learning algorithms.

In the BoW model, a text (e.g., a sentence or a document) is represented as a

multiset of its words, disregarding grammar and word order but keeping

multiplicity. Here's a step-by-step process to understand how BoW works:

Vocabulary Creation: Compile a list of all unique words (the vocabulary) in

the entire text corpus.

Vector Representation: For each document in the corpus, create a vector

where each dimension corresponds to a word in the vocabulary. The value of

each dimension is the count (or frequency) of the word in the document.

BOW

Consider a simple corpus with three sentences:

- "I love machine learning"

- "Machine learning is great"

- "I love coding“

The rule that generates this representation involves the following

steps:

1- Create the Vocabulary: Identify all unique words in the entire

corpus (the collection of sentences/documents).

Vocabulary: ['I', 'love', 'machine', 'learning', 'is', 'great',

'coding']

BOW

2- Order the Vocabulary: The order of the vocabulary can be

arbitrary but needs to be consistent. For instance, in our example,

the order is:

[‘coding’,‘great’, ‘I’, ‘is’ , ‘learning’, ,‘Love’, ‘machine’]

2- Vector Representation: For each document, create a vector

where each dimension corresponds to a word in the

vocabulary. The value of each dimension is the count

(frequency) of the word in the document.

BOW

Detailed Steps for the Sentence "I love machine learning":

Initialize the Vector: Start with a zero vector that has the same length as the

vocabulary. In this case, the initial vector is:

[0,0,0,0,0,0,0]
Count Word Frequencies:

"I" appears once: Increment the first position (corresponding to 'I') by 1.

"love" appears once: Increment the second position (corresponding to 'love')

by 1.

"machine" appears once: Increment the third position (corresponding to

'machine') by 1.

"learning" appears once: Increment the fourth position (corresponding to

'learning') by 1.

BOW

Resulting Vector: After counting the frequencies of the words in

the sentence, the vector becomes:

Vector Representation:

"I love machine learning": [1, 1, 1, 1, 0, 0, 0]
"Machine learning is great": [0, 0, 1, 1, 1, 1, 0]
"I love coding": [1, 1, 0, 0, 0, 0, 1]

BOW

Benefits of the Bag-of-Words Model:

Simplicity: BoW is straightforward to understand and implement.

Effective for Small Datasets: It's effective for simple text

classification tasks, especially with smaller datasets.

Baseline Model: It serves as a good baseline for more complex

models.

BOW

Use Cases of Bag-of-Words in NLP

Text Classification: Spam detection, sentiment analysis,

document categorization.

Information Retrieval: Search engines, document similarity.

Language Modeling: Basic language generation tasks,

creating simple chatbot responses..

