. Y I Ry
. Sy ; a*
. . Ay
R ® oa
. .]
: e L I
- T] s /0
. . ..
2 - .- .
® .. &d
T -«

Natural Languagef'P'r'c').Ce_' \ "fh-g
NLP_CLT_1st May_11th* 20

T
Eng. Maytham Ghanoum . -
Artificial Intelligence & Deep Learning Specialist - -~ "*" = <l
MTN Syria — SCS — SVU CLT T el INEREC S S
+963947222064 - +963982018359 :

https://www.linkedin.com/in/maytham-ghanoum-697aa5207/
https://www.facebook.com/maytham.ghanoum

What is Deep Learning!?

ARTIFICIAL
INTELLIGENCE

Any technique that enables
computers to mimic
human behavior

HUMAN NERVOUS

S

The Perceptron: Forward Propagation

Linear combination
Output of inputs

l ml
s 5 0n)

i=1

Non-linear
activation function

Inputs Weights Sum Non-Linearity Output

. ‘\. -
-

.

Forward Pass in a Perceptron
A perceptron is the simplest form of an artificial neural network. It mimics the way biological neurons
process inputs and generate outputs. Let's go through the entire process mathematically, from inputs
to output.

1. Inputs and Weights

The perceptron takes multiple inputs, represented as a vector X.
Each input has an associated weight, represented as a vector W.
Mathematically, if we have n inputs, we define:

X = [xl,xZ,x3,.....,xn]
W =1[w;,wy,ws, ..., W, |

9 P

X: represents each input feature.
W: represents the weight associated with each input.
The perceptron also includes a bias term 6, which helps the model shift the decision boundary.

il P A= N/ -

Ve, |

» - - v .
- \.‘_ ‘ - t‘ -
s

Summation Function (Weighted Sum)

The perceptron computes a weighted sum of inputs:

n

Z = le-wi+b

=1

- This operation is a dot product between the input vector X and the weight vector W, plus the bias 5.

g Activation Function

The perceptron applies an activation function to decide the o'u‘tput.

In a basic perceptron, we use the step function:
- 1 itz =0
f(Zz)=4. .
0, ifZ <0
If a different activation function like sigmoid or ReLU is used, the output is computed as:
e Sigmoid (for probability-based outputs):

1

) =172

e RelLU (for deep networks, avoids vanishing gradient issues):

f(Z) = max(0, Z)

The activation function determines whether the perceptron fires (outputs 1) or remains inactive

(outputs 0O).

If the perceptron's output is incorrect, we update the weights using the Perceptron Learning Rule.

The weight update rule is:

TLeEw

wi = wi +n-(y —9) -z

where:
* 7 is the learning rate (controls how much to adjust weights).
Yy iIs the true label.
1 is the predicted output.
e I; is the input corresponding to the weight w;.

Similarly, the bias is updated as:

bnew _ baﬁd + n - (y o ﬁ]

Summary of the Process

. Take input vector X.

. Multiply inputs by weights and add bias: Z = W - X + b.
. Pass Z through an activation function to get the output).
. Compare ¢ with the actual label .

. If incorrect, adjust weights using the learning rule.

. Repeat the process for multiple iterations until the perceptron converges.

o s) s 2 S e BBl oS ¥ d e o BTN EB B SV S

Mathematical Example

We will implement a perceptron to solve a simple binary classification problem. Let's say we have a

dataset with two features, and we want to classify points into two classes (0 or 1).

Dataset

Step 1: Initialize Weights and Bias
We randomly initialize the weights and bias.

e Let'sassume wy = 0.5, ws = 0.5, and b = —0.7.

Step 2: Compute the Weighted Sum (Linear Combination)

For each input X = (:I:l, :132), compute:
Z = Irjun t oW + b

Step 3: Apply Activation Function

Using the step function:

1, ifZ>0
0, ifZ <0

-

S

[g

Step 4: Update Weights if the Prediction is Wrong

If § # v, update the weights using:

wf® = uwl 4 p(y - §)e;

where 1) s the learning rate.

What is the Learning Rate?

The learning rate (7)) is a hyperparameter that controls how much the model updates its weights
during training. It determines the step size in the direction of the gradient, guiding how quickly or

slowly the model learns from errors.

Mathematically, in gradient descent, the weight update formula is:

new __ wn::]d

w + n - gradient

where:
e w"Y = updated weight
w°d = current weight

11 = learning rate

gradient = derivative of the loss function w.r.t. the weight

.

/

How Does Learning Rate Mimic Human Learning?

The learning rate in deep learning is similar to how humans learn from experience:
1. High Learning Rate (77 too large) — Rushing & Forgetting

e Imagine a student who rushes through a topic without understanding details. They might

overcorrect mistakes and struggle to retain knowledge.

In ML, a high learning rate makes large weight changes, causing the model to oscillate and

never converge.
2. Low Learning Rate (1) too small) — Slow Learning & Forgetfulness
» If a student learns too slowly, they might improve steadily but take forever to grasp concepts.

* |n ML, too small a learning rate leads to very slow convergence, requiring too many epochs to

learn.
3. Optimal Learning Rate (77 well-chosen) — Balanced Learning

» A student who balances theory and practice learns efficiently, avoiding overcorrection and

retaining knowledge well.

e In ML, an optimal learning rate ensures fast but stable convergence.

How to Choose the Learning Rate?

1. Experimentation (Trial & Error)
*» Start with a moderate value (e.g., 0.01 or 0.001).
* |ncrease if the model is learning too slowly.
* Decrease if the loss fluctuates wildly.
2. Using a Learning Rate Scheduler
* Adaptive methods (e.g., Adam, RMSprop) adjust the learning rate automatically.
* Step decay: Reduce learning rate at fixed epochs.
* Exponential decay: Reduce learning rate gradually over time.
3. Using Learning Rate Range Tests

e Train the model with increasing learning rates and find the best range (e.g., Learning Rate

Finder).

Using the Sigmoid Activation Function in the Perceptron

In the original example, we used the step function as the activation function:

1, ifZ>0
J) = -
f(Z) {m if Z <0

Now, we will replace it with the sigmoid activation function, which is smoother and differentiable,

making it useful for gradient-based optimization:

1

o) =1 ez

This function squashes the output to a value between 0 and 1, making it suitable for binary

classification.

Mathematical Breakdown with Sigmoid Activation
Let's apply the sigmoid function to the perceptron and perform a forward pass.
1. Compute the weighted sum (linear transformation):
L =xiuw +xTows + b
. Apply the sigmoid activation function:

1

Ypred = O(Z) = 112

. Compute the error:

Update the weights using gradient descent:

w = w? +n.error-x; -0 (Z) - (1 —o(2))

]

where 1) is the learning rate, and o(Z) - (1 — o(Z)) is the derivative of the sigmoid function.

Gradient Descent: The Core of Learning in
Deep Learning

What is Gradient Descent?

Gradient Descent is an optimization algorithm used to minimize the loss function by iteratively
updating the model's parameters (weights and biases). It helps the neural network learn by adjusting

weights in the direction that reduces the error.

Imagine you're hiking down a mountain in the fog—you take small steps downward to reach the lowest

point (the global minimum of the loss function).

Mathematical Overview

1. The Loss Function

A neural network tries to minimize a loss function £, such as:

£— -3 w97

where:
e 1 is the actual value.
» ij is the predicted value.

711 is the number of samples.

2. Computing the Gradient

To minimize L, we compute the gradient (derivative) of the loss function with respect to the weights W

AL
AW

The gradient tells us the direction in which the loss function increases. To minimize loss, we update the

weights in the opposite direction of the gradient.

.

P

3. Weight Update Rule

where:

* 1) (learning rate) controls the step size.

ar . -
* &y is the gradient.

4. The Importance of Learning Rate (7))

e Too large: We overshoot and never converge.
e Too small: The process is too slow.

e Optimal: Helps reach the minimum efficiently.

Gradient Descent Variants

1. Batch Gradient Descent
e Uses the entire dataset to compute the gradient.

e Slow for large datasets.

2. Stochastic Gradient Descent (SGD)

e Uses one sample at a time to compute gradients.

s Faster but noisier.

3. Mini-Batch Gradient Descent

* Uses a small batch of samples at each step.

e Balances efficiency and stability.

R A Outputs

WV A
Ra’
lI-nput HLidden

Output
Layer

Multi-Layer Perceptron (MLP) with Backpropagation

A Multi-Layer Perceptron (MLP) is an artificial neural network composed of multiple layers of neurons:
1. Input Layer (accepts data)
2. Hidden Layers (extracts features and patterns)

3. Output Layer (produces predictions)

Each neuron performs:

where:
W = weights
X = input features
b = bias
z = linear combination of weights and inputs

Activation function f(2z) introduces non-linearity

Why Use Backpropagation?

Backpropagation is the learning algorithm that allows MLP to update weights efficiently.
It minimizes the error between predicted output and actual labels by adjusting weights using gradient

descent.

Backpropagation Steps
1. Forward Pass: Compute output of each neuron layer-by-layer.
2. Loss Calculation: Compare predicted and actual output using a loss function.
. Backward Pass: Compute gradients of the loss w.r.t. weights using the chain rule.

. Weight Update: Adjust weights using gradient descent.

Adam Optimizer: The King of Optimization

Why Use Adam?

Adam (Adaptive Moment Estimation) is a more advanced optimization algorithm that combines the

advantages of:
e Momentum (smooths updates)

e RMSprop (adapts learning rates for different parameters)

Mathematical Breakdown

1. Compute the gradient g; at time ¢:

2. Compute moving averages:

= First moment estimate (Momentum):

my = Bimg_1 + (1 — B1)ge

* Second moment estimate (RMSprop effect):

v = Bovsi_1 + (1 — B2)g7

3. Bias correction:

4. Update weights:

where:

£ = 0.9, 82 = 0.999 (default values)

e — 107" (to avoid division by zero)

11 (learning rate) is adaptive.

=%

