Natural Language Processing NLP_CLT_1c_June_8th_2025

Eng. Maytham Ghanoum

Artificial Intelligence & Deep Learning Specialist MTN Syria – SCS – SVU CLT +963947222064 - +963982018359 https://www.linkedin.com/in/maytham-ghanoum-69

https://www.facebook.com/maytham.ghanoum

CNN

What is CNN?

Convolutional Neural Networks (CNNs)

are a class of deep neural networks commonly used for analyzing visual data. They are particularly effective in image classification, object detection, and similar tasks

Key Concepts:

•Convolution Layer: The core building block, where a filter (or kernel) slides over the input image to detect features like edges, textures, etc.

•Pooling Layer: Reduces the spatial dimensions (width and height) of the feature maps, which helps in reducing computational complexity.

•Fully Connected Layer: Acts

like a standard neural network layer where every node is connected to every other node in the previous layer.

Activation Functions: Functions like ReLU (Rectified Linear Unit) are used to introduce nonlinearity in the model. Dropout: A regularization technique to prevent overfitting by randomly setting some layer outputs to zero during training.

To discover from images what is present in the world, where things are, what actions are taking place, to predict and anticipate events in the world

Impact: Facial Detection & Recognition

Impact: Medicine, Biology, Healthcare

Breast cancer

COVID-19

Skin cancer

What Computers "See"

Images are Numbers

187	163	174	168	180	162	129	151	172	161	155	156
155	182	163	74	78	62	99	17	310	210	180	154
180	180	60	14	34		10	33	-	108	189	161
206	109	4	124	191	111	120	204	165	15	56	180
194	- 68	107	251	237	239	239	228	227	. 67	71	201
172	108	207	233	293	214	220	239	228	. 88	74	206
188		179	209	185	216	211	158	1.99	76	20	169
189	87	165		10	168	134	11	91	62	22	148
199	168	191	193	158	227	178	143	182	104	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	145	234	187		150	79		218	241
190	224	147	108	227	210	127	103	36	101	255	224
190	214	173	-	103	143	-	80		105	249	215
187	195	235	78	,		-17			217	255	211
183	202	237	145		•	12	104	200	134	243	235
195	206	122	207	177	121	123	200	175	13	-	218

What the computer sees

157	159	174	168	150	152	129	161	172	161	155	166
165	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	6	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	105	207	233	239	214	220	239	220	98	74	206
188	48	179	209	185	215	211	168	129	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	35	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	30	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	109	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	130	243	236
195	206	123	207	177	121	129	200	175	13	96	216

An image is just a matrix of numbers [0,255]! i.e., 1080×1080×3 for an RGB image

Tasks in Computer Vision

- Regression: output variable takes continuous value
- Classification: output variable takes class label. Can produce probability of belonging to a particular class

Learning Feature Representations

Can we learn a **hierarchy of features** directly from the data instead of hand engineering?

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

Feature Extraction and Convolution A Case Study

The Convolution Operation

Suppose we want to compute the convolution of a 5x5 image and a 3x3 filter:

We slide the 3x3 filter over the input image, element-wise multiply, and add the output

The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

CNNs for Classification

- I. Convolution: Apply filters to generate feature maps.
- 2. Non-linearity: Often ReLU.
- 3. Pooling: Downsampling operation on each feature map.

Train model with image data. Learn weights of filters in convolutional layers.

tf.keras.layers.MaxPool2D

Convolutional Layers: Local Connectivity

tf.keras.layers.Conv2D

For a neuron in hidden layer:

- Take inputs from patch
- Compute weighted sum
- Apply bias

1) applying a window of weights 2) computing linear combinations 3) activating with non-linear function

of weights wij

i=1

for neuron (p,q) in hidden layer

CNNs: Spatial Arrangement of Output Volume

Layer Dimensions:

h x w x d

where h and w are spatial dimensions d (depth) = number of filters

> Stride: Filter step size

Receptive Field:

Locations in input image that a node is path connected to

tf keras layers Conv2D(filters=d, kernel_size=(h,w), strides=s)

Pooling

х

max pool with 2x2 filters and stride 2

tf.keras.layers.MaxPool2D(
 pool_size=(2,2),
 strides=2
)

Reduced dimensionality
 Spatial invariance

How else can we downsample and preserve spatial invariance?

Representation Learning in Deep CNNs

Low level features

Edges, dark spots

Conv Layer I

Mid level features

Eyes, ears, nose

Conv Layer 2

High level features

Facial structure

Conv Layer 3

- I. Learn features in input image through **convolution**
- 2. Introduce non-linearity through activation function (real-world data is non-linear
- 3. Reduce dimensionality and preserve spatial invariance with pooling

 $softmax(y_i)$

- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as **probability** of image belonging to a particular class

An Architecture for Many Applications

