
Natural Language Processing

NLP_CLT_1c_June_8th_2025

Eng. Maytham Ghanoum
Artificial Intelligence & Deep Learning Specialist

MTN Syria – SCS – SVU CLT

+963947222064 - +963982018359

https://www.linkedin.com/in/maytham-ghanoum-697aa5207/
https://www.facebook.com/maytham.ghanoum

https://www.linkedin.com/in/maytham-ghanoum-697aa5207/
https://www.facebook.com/maytham.ghanoum

Attention Mechanism

Attention Mechanism:
The attention mechanism is a technique that allows the
model to focus on different parts of the input sequence
when generating each part of the output sequence. It
addresses the limitation of traditional RNNs and LSTMs,
which struggle with long-range dependencies.

Attention Mechanism

Why Attention is Important Improves Context
Understanding:
In long sentences, important information might be far
from the current word being processed. Attention helps
the model weigh the importance of different words
differently.
Parallelism: Unlike RNNs, attention mechanisms allow
more parallelization, which speeds up training.

Attention Mechanism

How Attention Works
Score Calculation: For a given input, the model calculates a score
for each word in the input sequence. This score represents the
relevance of the input word to the current output word being
generated.
Softmax: These scores are then normalized using a softmax
function to get attention weights.
Context Vector: The context vector is computed as the weighted
sum of the input words' embeddings, using the attention weights.
Combining Context with Output: The context vector is then used
to generate the output word.

Attention Mechanism

Mathematically, the process can be described as:

𝑆𝑐𝑜𝑟𝑒 ℎ𝑡 , ℎ𝑠 = ℎ𝑡
𝑇𝑊𝑎ℎ𝑠

𝑎𝑡𝑠 =
exp(𝑆𝑐𝑜𝑟𝑒 ℎ𝑡 , ℎ𝑠)

σ𝑠
𝑡 exp(𝑆𝑐𝑜𝑟𝑒 ℎ𝑡 , ℎ𝑠)

𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑡 = ෍

𝑠

𝑎𝑡𝑠ℎ𝑠

Attention Mechanism

Mathematically, the process can be described as:

Attention Mechanism

Types of Attention
Global Attention: The model looks at all the
hidden states of the input sequence.

Local Attention: The model focuses on a
subset of the hidden states, typically
around a specific point.

Attention Mechanism

Steps in Attention Mechanism
Alignment Scores: For each output word, calculate
scores between it and each input word.
Attention Weights: Apply a softmax to these scores to
get weights.
Context Vector: Compute a weighted sum of the input
hidden states using these weights.
Output: Combine this context vector with the current
output word's hidden state to generate the final output.

Attention Mechanism

Types of Attention
Global Attention: The model looks at all the
hidden states of the input sequence.

Local Attention: The model focuses on a
subset of the hidden states, typically
around a specific point.

Transformer

Transformers are a type of neural network architecture
designed for processing sequences of data, such as text.
They were introduced in the paper "Attention is All You
Need" by Vaswani et al. in 2017. The key innovation of
Transformers is the self-attention mechanism, which
allows the model to weigh the importance of different
words in a sequence when encoding and decoding.

Transformer

Why Work with Transformers?
Efficiency and Parallelization:

Unlike RNNs and LSTMs, which process data sequentially, Transformers can
process entire sequences in parallel. This parallelization significantly speeds up
training and inference.

Long-range Dependencies:
Transformers can capture long-range dependencies in sequences better than RNNs
and LSTMs because self-attention allows every word in a sequence to directly
attend to every other word.

Scalability:
Transformers can be scaled to handle very large datasets and models with billions
of parameters, making them suitable for state-of-the-art NLP tasks.

Performance:
They achieve superior performance on a wide range of NLP tasks, including
machine translation, text summarization, and language modeling.

Transformer

How Were Transformers Created?
Transformers were developed to address the limitations of traditional sequence models
like RNNs and LSTMs. The main issues with these models were:
Sequential Processing:

RNNs and LSTMs process tokens one by one, which prevents parallelization and
makes them slow for long sequences.

Difficulty in Capturing Long-range Dependencies:
RNNs struggle with long-range dependencies due to issues like vanishing
gradients, making it hard to capture relationships between distant words in a
sequence.

To overcome these issues, the authors of "Attention is All You Need" proposed the
Transformer architecture, which relies heavily on self-attention mechanisms.

Transformer

Key Components of the Transformer Architecture
Self-Attention Mechanism:

Self-attention allows the model to weigh the importance of different words in a
sequence relative to each other. It calculates attention scores between all pairs of
words in a sequence, enabling the model to capture dependencies regardless of
distance.

Multi-Head Attention:
Instead of a single attention mechanism, the Transformer uses multiple attention
heads. Each head learns different aspects of the relationships between words,
providing richer representations.

Positional Encoding:
Since Transformers do not inherently capture the order of words, positional
encodings are added to the input embeddings to provide information about the
position of each word in the sequence.

Encoder-Decoder Architecture:
The Transformer consists of an encoder and a decoder, each composed of multiple
layers. The encoder processes the input sequence and generates a representation,
which the decoder then uses to produce the output sequence.

Transformer

Structure of a Transformer
Encoder:

Input Embedding: Converts input tokens into dense vectors.
Positional Encoding: Adds positional information to
embeddings.
Stack of Encoder Layers: Each layer consists of:

Multi-Head Self-Attention: Applies self-attention to the
input.
Feed-Forward Network (FFN): Applies a two-layer fully
connected network to each position.
Residual Connections and Layer Normalization: Helps in
training deep networks.

Transformer

Structure of a Transformer
Decoder:
Output Embedding: Converts output tokens into dense vectors.
Positional Encoding: Adds positional information to embeddings.
Stack of Decoder Layers: Each layer consists of:

Masked Multi-Head Self-Attention: Applies self-attention
with a mask to prevent attending to future positions.
Multi-Head Attention with Encoder Outputs: Attends to the
encoder's output.
Feed-Forward Network (FFN): Similar to the encoder.
Residual Connections and Layer Normalization: Helps in
training deep networks.

Transformer

Applications:
Machine Translation: Translating text between
languages.
Text Summarization: Generating concise summaries of
longer texts.
Language Modeling: Predicting the next word in a
sequence.
Question Answering: Providing answers to questions
based on context.
Text Generation: Generating coherent and contextually
relevant text.

Transformer

Transformers use several key mathematical operations:

Transformer

Transformers use several key mathematical operations:

Transformer

Hugging Face
Hugging Face is a company that provides a wide range of
tools and libraries for Natural Language Processing (NLP).
Their Transformers library is one of the most popular
libraries for working with pre-trained transformer
models.
Transformers Library:
Purpose: Simplifies the use of transformer models for
various NLP tasks.
Models: Includes popular models like BERT, GPT-2, T5,
RoBERTa, and many more.
Tasks: Supports tasks such as text classification, question
answering, text generation, and translation.

Transformer

Hugging Face
Hugging Face is a company that provides a wide range of
tools and libraries for Natural Language Processing (NLP).
Their Transformers library is one of the most popular
libraries for working with pre-trained transformer
models.
Transformers Library:
Purpose: Simplifies the use of transformer models for
various NLP tasks.
Models: Includes popular models like BERT, GPT-2, T5,
RoBERTa, and many more.
Tasks: Supports tasks such as text classification, question
answering, text generation, and translation.

